
Core Python

Programming

Table of Contents:

Program Overview:

Program Features:

1

Python Fundamentals
Object Oriented Programming (OOPs)
Data Structures

Self-Paced videos

Live Classes & Doubt Clearing Sessions

Industry Based Case Studies

Assignments & Quizzes

Project Assessment

Our Core Python Programming is a comprehensive course designed to provide you with a
solid founda�on in Python programming, object-oriented programming (OOP) concepts,
and essen�al data structures. Whether you're new or seasoned, it equips you with essen�al
skills to excel in Python development. Explore core Python principles, OOP's power, and
master data structures to unlock your poten�al as a Python programmer.

Mode of Delivery

Self-Paced Videos - 19 Hours

Live Lectures - 6 Hours

Short Learning Material - 1 Hour

Capstone Project/Case Study - 2 Hours

Assessments & Assignments - 2 Hours

2

Instructor Details

Rakhee Das

(Faculty at NMIMS)

With 15+ years in Engineering Educa�on and EdTech, Dr.
Das excels in curriculum design, teacher training, project
leadership, and research (Scopus, Springer, IEEE).
Passionate about technical wri�ng and machine learning,
Dr. Das holds a PhD and specializes in Python and Deep
Learning.

Course Structure

Rocky Jagtiani

(Corporate Trainer)

With 18+ years of experience, Mr. Jagtani has trained
over 18,000 professionals in core programming, Python,

Data Science, ML, and AI. A skilled trainer and content
developer in Databases and Data Science, Mr. Jagtani is

passionate about ML/NLP and IT recruitment.

Program Ideal For

Students from IT/CS Background
Students aspiring to build a career in data analy�cs and data science
Students aspiring to build a career in Python development
Anyone wan�ng to build work with web development or automa�on

Learning Outcomes

Write well-structured Python programs using essen�al language constructs.
U�lize func�ons, modules, and packages for code organiza�on and reusability.
Interact with files for data persistence.
Implement robust error-handling mechanisms.
Design and develop object-oriented programs using core OOP principles.
Apply various data structures to solve problems efficiently.

3

Your Pathway To Success!

Python
Developer

Python
Web Developer

Software
Engineer

Automation
Testing Engineer

Data Analyst

Data Scientist

Machine
Learning Engineer

4

Course Details

Week 1 :
1. Overview of Python: print() statement, how to give comments, what's the use """ or ''',
 declaring variables of different types, two ways to format String -> {} and .format(),
 different types of escape sequences, order of MATH operations -> PEMDAS, use input()
 to get input, use cmd line arguments i.e. argv to get input, define and call functions.

2. Data-types & Operators in Python: Python Numbers : (long)int, float, complex no. ,
 Python String, Python Lists, Python Tuples, Python Dictionary, Types of Operators -
 Arithmetic Operators, Comparison (Relational) Operators, Assignment Operators, Logical
 Operators, Bitwise Operators, Membership Operators, Identity Operators; Decision making,
 Loops, Iterator & Generator.

3. Project: Web Scrapping Tool and Simplified Hotel Bill

4. Build-in functions of Python Data-types: Number build-in functions, String build-in
 functions, List build-in functions, Tuple build-in functions, zip() and use of zip(), Properties
 of Dictionary Keys, dictionary build-in functions, Difference between shallow and deep copy,
 Date & time functions.

5. Functions, Modules & Packages: Syntax of user-defined function, Pass by Reference
 vs. Pass by Value, Function Arguments - a> Required arguments, b> Keyword arguments,
 c> Default arguments, d> Variable-length arguments; use pointer notation(*): to accept
 many arguments, Anonymous Functions: use lambda keyword, not, def keyword, Scope
 of Variables - a> Global variables, b> Local variables; Concept of a module, from...import
 <name> Statement, from...import * Statement, Executing Modules as Scripts, Locating
 Modules, dir() Function, globals() and locals(), Packages, don't confuse between importing
 from a package w.r.t importing from a module, install packages

6. Reading/Writing from files: Opening and Closing Files, Reading from files, Writing to
 files, Check current position of file pointer, Copy from one file to another, Renaming file,
 Deleting file/s, Functions to operate with directories - a> mkdir() Method, b> chdir() Method,
 c> getcwd() Method, d> rmdir() Method.

7. Project: Simple Invoicing Program

8. Assertions & Exceptions: Assertions: when and why to use? About Exceptions,
 except Clause with no Exceptions, except Clause with multiple Exceptions, try-finally
 Clause, Argument of an Exception, Raising an Exception, User-Defined Exceptions,
 Coding Exercises.

9. Live Session: Doubt clearing session the learnings from the self paced videos.

10.Core Python Programming Assessment

5

Week 2 :

1. Introduction to Object Oriented Programming: OOPs concepts - Attributes, Behavior,
 Class, Object. Some simple class-based program examples.

2. Python Objects and Classes: What is exactly instantiation?, Defining a Class in Python,
 docstring (__doc__), local namespace concept. Constructors in Python (__init__()),
 Some sample programs to explain parameterised constructors. Deleting Attributes and
 Objects (del statement) Programming Exercises.

3. Python Inheritance: What is Inheritance and Why is it needed?, Python Inheritance
 Syntax, Example of Inheritance in Python, Method Overriding in Python. Programming
 Exercises. Python Multiple Inheritance, Python Multilevel Inheritance, Method Resolution
 Order in Python, Programming Exercises.

4. Python Operator Overloading: Benefit of Overloading, List of Python operators that
 can be overloaded, Python Special Functions (begin with double underscore __).
 Examples - Overloading the + Operator, Overloading Comparison Operators.
 Programming Exercises.

5. Python Iterators: What is the purpose of Iterators, __iter__() and __next__(),
 Explain practically line by line code for "Iterating through an Iterator", Working of for loop
 for Iterators, Building Custom Iterators, Python Infinite Iterators. Programming Exercises.

6. Python Generators: How are Python Generators different from iterators and normal
 functions?, Create Generators in Python, Differences between Generator function and
 Normal function, Python Generators with a Loop. Python Generator Expression. Use of
 Python Generators - Easy to Implement, Memory Efficient and Represent Infinite Stream.
 Pipelining Generators. Programming Exercises.

7. Python Closures: Nonlocal variable in a nested function, Defining a Closure Function.
 When do we have closures? When to use closures? Introduction to Python Decorators.
 Simple Programming Exercises.

8. Python Decorators: Prerequisites for learning decorators, callable methods, __call__(),
 and Example programs. Decorating Functions with Parameters, Chaining Decorators in
 Python. Simple Programming Exercises.

9. Python @property decorator: Class Without Getters and Setters, Using Getters and
 Setters, explain property Class, explain @property Decorator with example codes.
 Simple Programming Exercises.

10.Live Session: Doubt clearing session the learnings from the self-paced videos.

11.Object-Oriented Programming Final Assessment

6

Week 3 :

1. Need for Data Structures: Basic Program Elements, Control Statements, Strings and
 Their Operations, Built-In Python Collections and Their Operations, Catching Exceptions,
 Files and Their Operations, Creating New Classes.

2. An Overview of Collections: Collection Types (will cover four general categories of
 collections — linear, hierarchical, graph, and unordered), Operations on Collections,
 Iterators and Higher-Order Functions, Implementations of Collections

3. Searching, Sorting, and Complexity Analysis: Measuring the Efficiency of Algorithms,
 Complexity Analysis, Search Algorithms, Basic Sort Algorithms, Analysis Summary

4. Arrays and Linked Structures: The Array Data Structure, Operations on Arrays,
 Two-Dimensional Arrays (Grids), Linked Structures, Operations on Singly Linked Structures.

5. Live Session: Doubt clearing session the learnings from the self paced videos.

Week 4 :

1. Recalling important OOP concepts - Interfaces, Implementations, and Polymorphism:
 Developing an Interface, Constructors and Implementing Classes, Developing an Array-
 Based Implementation, Developing a Link-Based Implementation

2. Recalling another OOP concept - Inheritance and Abstract Classes: Using Inheritance
 to Customize an Existing Class, Using Abstract Classes to Eliminate Redundant Code, An
 Abstract Class for All Collections.

3. Stacks & Its Applications: Overview of Stacks, Using a Stack, Three Applications of
 Stacks - Evaluating Arithmetic Expressions, Backtracking algorithm, Memory Management,
 implementations of Stack - using Arrays as ArrayStack and using linked Structure as
 LinkedStack.

4. Application of Linked List: Recalling Lists, Two Applications of Lists - Heap-Storage
 Management, Organization of Files on a Disk, List Implementations - array-based and
 linked structure-based

5. Live Session (1 hour): Doubt clearing session the learnings from the self-paced videos.

7

Week 5 :

1. Trees and its Applications: An Overview of Trees, Why Use a Tree?, The Shape of
Binary Trees, Binary Tree Traversals, Three Common Applications of Binary Trees -
Heaps, Binary Search Trees, Expression Trees. Developing a Binary Search Tree
implementation.

2. Graph & its Applications: Why Use Graphs?, Graph Terminology, Representations of
Graphs, Graph Traversals, Applications of Graph, Developing a Graph Collection

3. Live Session: Doubt clearing session the learnings from the self paced videos.

4. Python Data Structures Assessment

Week 6 :

Capstone Project: Building a Simple Address Book

This project aims to create a basic address book application using core Python programming,
data structures, and object-oriented programming (OOP) principles.

Scan this QR code with your
smartphone and discover
more informa�on about
the program

FOR ENQUIRIES:
CALL +91 73040 02635

www.hunarho.com
support@hunarho.com

x

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8

